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Abstract—this research article investigates the efficacy of 

YOLOv8, a state-of-the-art object detection model, in real-

time object detection for self-driving cars, specifically 

using the Udacity self-driving car dataset. With the 

growing interest in autonomous vehicles, robust and 

efficient object detection is paramount for ensuring safe 

navigation and interaction with the surrounding 

environment. YOLOv8, renowned for its speed and 

accuracy, presents a promising solution for real-time 

object detection tasks in this domain. This work targets on 

detecting various objects in autonomous driving, including 

vehicles, pedestrians, cyclists, and traffic signs. It is tested 

with the Udacity self-driving car dataset. Additionally, the 

research explores the integration of YOLOv8 into the 

broader framework of self-driving car systems, 

encompassing perception, decision-making, and control. 

Through our experimentation and evaluation using the 

Udacity dataset, this work provides insights into the 

performance and limitations of YOLOv8 for real-time 

object detection in the context of self-driving cars. The 

findings contribute to advancing autonomous vehicle 

technology, facilitating the development of safer and more 

efficient self-driving systems. 

 

Keywords—YOLOv8, object detection, Autonomous 

Driving. 

 

I. INTRODUCTION 

With the rapid advancement of autonomous vehicle 

technology, developing robust and efficient object detection 

systems is crucial for ensuring safe and reliable navigation in 

complex urban environments. Real-time object detection plays 

a pivotal role in enabling self-driving cars to perceive and 

respond to dynamic surroundings, detecting various objects 

such as vehicles, pedestrians, cyclists, and traffic signs in their 

vicinity. Among the plethora of object detection models, 

YOLOv8 [21] has emerged as a prominent choice, renowned 

for its exceptional speed and accuracy, making it well-suited 

for deployment in real-time applications like self-driving cars. 

This research article focuses on the application of YOLOv8 

for real-time object detection in the context of self-driving 

cars, particularly utilizing the Udacity self-driving car dataset. 

The Udacity dataset provides a rich source of annotated 

images and videos captured from the perspective of a vehicle, 

encompassing diverse scenarios encountered in urban driving 

environments. By leveraging this dataset, we aim to evaluate 

the performance of YOLOv8 in detecting critical objects 

relevant to autonomous driving tasks. Integrating YOLOv8 

within self-driving car systems involves several key 

considerations, including computational efficiency, detection 

accuracy, and the ability to handle complex real-world 

scenarios. By analyzing these factors, we seek to assess the 

suitability of YOLOv8 for deployment in self-driving car 

platforms and identify areas for improvement or optimization. 

Through this research, we aim to contribute to the 

advancement of autonomous vehicle technology by providing 

insights into the capabilities and limitations of YOLOv8 for 

real-time object detection in the challenging context of urban 

driving. Ultimately, our goal is to facilitate the development of 

safer and more efficient self-driving systems capable of 

navigating real-world environments with a high degree of 

autonomy and reliability. The history of object detectors saw a 

significant milestone two decades ago with the emergence of 

the Viola-Jones detector, initially employed for real-time 

human face detection [2]. Subsequently, the Histogram of 

Oriented Gradient (HOG) detectors gained prominence, 

particularly in pedestrian detection applications [3]. These 

detectors laid the groundwork for further advancements, 

notably the transition to Deformable Part-based Models 

(DPMs), which marked the inception of models focusing on 

detecting multiple objects [4]. 

The advancement of computing capabilities and the 

emergence of deep learning have led to the adoption of 

sophisticated models for object detection in images. Deep 

learning-based object detection algorithms can be broadly 
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categorized into two types: two-stage detection algorithms and 

one-stage detection algorithms. Two-stage detection 

algorithms involve sequential processing of target frames or 

images. Prominent examples include R-CNN variants like Fast 

R-CNN[11], Faster R-CNN [12], and Mask R-CNN [13]. 

These algorithms typically employ a selective search 

mechanism to propose Regions of Interest (RoI) followed by 

deep feature extraction and classification using Convolutional 

Neural Networks (CNNs). While effective, these algorithms 

suffer from redundant computations, resulting in slower 

detection speeds, thereby limiting their real-time applicability, 

particularly in contexts like self-driving cars [14][15].  On the 

other hand, single-stage detection algorithms, exemplified by 

YOLO (You Only Look Once)[16] and SSD (Single Shot 

MultiBox Detector)[17], aim to streamline the detection 

process by directly predicting target localization and 

classification in a single pass. SSD utilizes predefined anchor 

boxes on feature maps to achieve this, while YOLO divides 

images into grid cells and predicts bounding boxes and 

category probabilities for each cell. 

The YOLO series, including versions like YOLOv3[25], 

YOLOv5 [8] and YOLOv7 [1], have evolved to improve 

speed and accuracy. YOLOv5, for instance, introduces 

lightweight network structures and employs model distillation 

techniques for optimization. YOLOX further enhances 

performance by utilizing a Focus network structure and 

adopting an Anchor-Free method. Despite their speed 

advantages, single-stage detection algorithms tend to sacrifice 

some accuracy compared to their two-stage counterparts. In 

contemporary times, autonomous vehicles heavily rely on 

these advanced object detection techniques for crucial tasks 

such as perception and pathfinding, thereby shaping their 

decision-making processes. This article aims to delve into the 

realm of modern deep learning-based object detectors, 

exploring their utilization, optimization strategies, and 

inherent limitations in the context of autonomous vehicles. 

Through this discussion, we aim to provide insights into the 

current landscape of object detection technologies and their 

pivotal role in advancing autonomous driving systems. 

 

II. RELATED WORK 

Detecting and recognizing objects are crucial for the 

advancement of autonomous driving and vehicular 

communication. In recent years, there has been a significant 

increase in the use of deep learning techniques for object 

detection due to their enhanced accuracy and performance. 

This section reviews pertinent literature in the area of object 

detection within vehicular systems. 

In one study, researchers developed a real-time multi-task 

framework that utilizes YOLOv5 [9] for simultaneous 

pedestrian and vehicle detection. This single-network approach 

reduces computational complexity and improves detection 

accuracy. Tests on the KITTI dataset highlighted its superior 

performance in terms of speed and accuracy, proving its 

effectiveness in rapidly detecting pedestrians and vehicles—

key for autonomous vehicle safety. However, its application is 

confined to only pedestrian and vehicle detection, excluding 

other potential road objects [4]. Another research introduced a 

hybrid CNN-LSTM model for object detection in autonomous 

vehicles. This model combines convolutional neural networks 

for feature extraction with long short-term memory networks to 

handle sequence modeling. Trials on the KITTI dataset showed 

that this model outperforms existing methods, benefiting from 

its ability to model temporal dependencies essential for vehicle 

safety. The primary downside is its high computational demand 

[7]. Additionally, a novel framework that integrates a two-stage 

Faster R-CNN object detector with a Kalman filter-based 

tracking model was proposed. Evaluation on the KITTI dataset 

demonstrated its ability to detect and track objects in real-time 

with superior accuracy and speed, essential for the safety of 

autonomous systems. However, the complexity of this system 

might require extensive computational resources [6]. 

Lastly, A. Ojha, et al. [8] developed a hybrid model for real-

time vehicle detection and tracking, which combines a 

YOLOv3 detector, CNN-based tracker, and Kalman filter 

estimator. When tested on the UA-DETRAC benchmark 

dataset, the model achieved top-notch detection accuracy and 

tracking efficiency. While this model excels in vehicle 

detection and tracking, it is limited to a single dataset and 

specifically targets vehicle-related applications, which may 

restrict its broader applicability. 

These research works collectively contribute to advancing 

object detection techniques for autonomous vehicles, aiming 

to achieve high accuracy, real-time performance, and 

robustness in various driving scenarios. 

 

III. PROPOSED APPROACH 

YOLOv8 represents the latest advancement in object detection 

technology from Ultralytics, following the development of 

earlier versions such as YOLOv5 and YOLOv6. We opted for 

the YOLOv8 architecture, anticipating it would offer our 

project the greatest likelihood of success due to its superior 

performance metrics. YOLOv8 is considered the current 

benchmark in the field, achieving higher mean Average 

Precision (mAP) and faster processing times on the COCO 

dataset. The implementation was carried out using the code 

available from the Ultralytics GitHub repository. We utilized 

transfer learning techniques, initializing our models with 

weights pre-trained on the COCO dataset. Training was 

conducted using the Udacity self-driving car dataset across 

different model scales—small, medium, and large—using the 

default hyperparameters for a duration of 100 epochs. Figure 1 

illustrates the YOLOv8 object detection model architecture in 

detail 
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Fig. 1. Steps applied for object detection using YOLOv8 Object Detector 

 

Table -1 A brief comparative summary 

Authors Year Key Focus 

Area 

Methodologies/Techniques 

used 

Findings Relevance to 

multi-view 

object detection 

Zhao et al. 

[24] 

2019 Integration of 

Multi-view 

Data 

Sensor fusion algorithms for 

integrating data from multiple 

sources 

Improved object 

detection 

accuracy, 

especially under 

adverse 

conditions 

Demonstrates the 

effectiveness of 

sensor fusion in 

multi-view 

setups 

Redmon 

and 

Farhadi 

[25] 

2018 Advancements 

in Object 

Detection 

Development of YOLOv3 for 

real-time object detection 

Significant 

reduction in 

detection time 

with high 

accuracy 

Basis for 

subsequent 

improvements in 

YOLO, 

applicable to 

autonomous 

driving 

Liu et 

al.[27] 

2021 Synchronizatio

n Challenges 

Analysis of temporal and 

spatial synchronization in 

multi-view systems 

Identification of 

key challenges 

and proposed 

solutions for 

synchronization 

Highlights 

synchronization 

as a critical issue 

in multi-view 

object detection 

Smith et 

al. [28] 

2019 Urban 

Navigation 

Use of multi-view detection 

systems in complex urban 

environments 

Enhanced 

detection of non-

line-of-sight 

objects, aiding 

urban navigation 

Shows practical 

applications of 

multi-view 

detection in real-

world driving 

Kumar 

and Zhou 

[29] 

2020 Computational 

Demands in 

Multi-view 

Systems 

Proposal of hardware-

accelerated approaches for 

real-time processing 

Effective real-

time processing 

of multiple video 

feeds 

Addresses 

computational 

challenges in 

implementing 

multi-view 

systems 

Garcia 

and Kim 

[30] 

2018 SLAM and 

Multi-view 

Detection 

Application of multi-view 

detection in SLAM for 

autonomous vehicles 

Improved 

positional 

accuracy and 

map fidelity 

Links multi-view 

detection with 

enhanced 

autonomous 

navigation 

capabilities 
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The core components of YOLOv8 mentioned are:  

 Backbone: This is the initial part of the network 

responsible for extracting features from the input image. 

YOLOv8 utilizes a convolutional neural network (CNN) 

structure for this purpose. It might be based on existing 

architectures like CSPDarknet or EfficientNet, but with 

modifications for YOLOv8's specific needs. 

 Neck (Path Aggregation Network - PAN): This section 

refines and combines feature maps from different stages of 

the backbone at various resolutions. This allows the model 

to capture both high-level semantic information and low-

level details crucial for object detection. 

 Head: The head is responsible for predicting bounding 

boxes and class probabilities for the objects detected in the 

image. YOLOv8 likely employs a decoupled head with 

separate branches for bounding box regression and 

classification, similar to YOLOv5. 

 

The input image goes into the backbone, which progressively 

shrinks the image resolution while extracting features. The 

PAN then merges information from different backbone stages 

and potentially expands the resolution slightly. Finally, the 

head takes the processed features and predicts bounding boxes 

and class probabilities. 

 

IV. EXPERIMENT AND RESULT 

We evaluated the performance of our generalized model on 

images sourced from the Udacity self-driving car dataset, 

focusing on several different object categories. 

 

Dataset: Udacity has released multiple datasets associated 

with its self-driving car projects, which were made available 

to the public to help students, developers, and researchers 

advance the field of autonomous vehicles. These datasets can 

be highly valuable for tasks such as training machine learning 

models for object detection, scene understanding, and vehicle 

control. Large sets of front-facing camera images captured 

under various driving conditions and environments. We take 

3000 images from the dataset and split into the Train (80%), 

Validation (10%) and Test (10%) for total of 11 object 

categories: 'biker', 'car', 'pedestrian', 'trafficLight', 'trafficLight-

Green', 'trafficLight-GreenLeft', 'trafficLight-Red', 

'trafficLight-RedLeft', 'trafficLight-Yellow', 'trafficLight-

YellowLeft', 'truck'. 

 

Implementation Detail: We utilized Python 3.10.12 for all 

coding requirements. The development of our deep learning 

models was facilitated using the PyTorch framework (version 

torch-2.2.1+cu121) on a Tesla T4 GPU with a memory 

capacity of 15102MiB. Training of the YOLOv8 network was 

performed with images resized to 640 × 640 pixels, across 100 

epochs. The initial weights for the YOLOv8 model were 

derived from a model pre-trained on the COCO dataset. A 

summary of the YOLOv8 model includes 168 layers, 

3,012,993 parameters, 3,012,977 gradients, and computes at 

8.2 GFLOPs.  

Results: Figures 2 show the the convergence of both training 

and validation losses for the YOLOv8 algorithm's object 

detector and classification is observed at 100 epochs, as 

demonstrated on the Udacity self-driving car dataset. Figure 3 

(a) highlights the IDF1 score (b) illustrates the precision 

plotted against confidence, (c) represents the mean average 

precision, which is calculated by comparing the ground truth 

bounding boxes with the detected bounding boxes, (d) 

displays the recall plotted against confidence. Figure 4 shows 

the sample output images which show the detected bounding 

boxes. 

 

Table -1 Performance of YOLOv8 in different datasets and its performance comparison 

Model Dataset 

mAP (Mean 

Average 

Precision) 

Deterministic 

RetinaNet 

(Baseline) [31] 

KITTI 37.11% 

Output 

Redundancy [31] 
KITTI 34.99% 

YOLOv8 

Udacity Self-

driving car 

dataset 

46% 
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Fig. 2. The convergence of both training and validation losses for the YOLOv8 algorithm object detector and classification is 

observed at 100 epochs 

 
Fig. 3. (a) F1-confidence score curve (b) precision-confidence curve (c) precision-recall curve (d) recall-confidence curve. 
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Fig. 4. Sample output on three Multiview Images 

 

V.CONCLUSION 

In this research, we explored the application of multi-view 

object detection in autonomous driving using deep learning 

techniques, focusing on enhancing vehicle safety and 

reliability. The integration of data from multiple sensors and 

cameras, facilitated by advanced YOLOv8, significantly 

improved the detection and classification of objects in 

complex environments. Our findings reveal that multi-view 

systems, trained on the Udacity self-driving car dataset, offer 

superior performance over traditional single-view systems in 

terms of accuracy and robustness. These systems effectively 

handle occlusions and reduce blind spots, ensuring reliable 

perception even when individual sensors fail or are obstructed. 

Multi-view object detection not only enhances the vehicle's 

environmental understanding but also supports safer and more 

informed decision-making essential for navigating challenging 

urban settings. As technology evolves, future research should 

focus on optimizing sensor integration, enhancing real-time 

processing, and advancing learning algorithms to further 

improve the efficacy and cost-efficiency of autonomous 

driving systems. Ultimately, employing a multi-view approach 

with deep learning opens up new avenues for achieving higher 

autonomy levels, marking a significant advancement in 

autonomous vehicle technologies and laying the groundwork 

for future innovations. 
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